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* Welcome & Introduction by Community Group Chairs (5 min)

* Real-Time Attack Detection and Mitigation: Measurement, Optimization on
Real Systems — Prof. Erol Gelenbe (20 min)

e Supply Chain Triage: Identifying Weak Points and Critical Dependencies -
Michael Herburger (20 min)

* Q&A (15 min)
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ECCO Community Working Groups (©Ecco

e Road-mapping

Startups/Scaleups - SMEs support
* Human factors
Skills

* Synergies on cybersecurity for Civilian and Space applications

Trusted supply chains
* Chairs: Antonio Skarmeta and José Luis Hernandez Ramos

e Participants: development of a “proto-community” based on the initial list of experts from ECSO and
Pilots, and growing with additional people (44 members so far)

e Objectives and results

* Build community of experts on trusted supply chains and Strengthening Trusted and Resilient Supply Chain in Europe
* Facilitate trusted information sharing about threats (to support prevention and response)

* Propose a strategy, planning and recommendations to support the NCCs in the implementation of the Strategic Agenda’s
Action Plan
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Strengthening Trusted Supply Chains: Real-Time Attack
Detection and Critical Dependency Analysis ((OECCO

 Webinar today focused on:
* Strengthening supply chain security through real-time threat detection and mitigation

* |dentifying and addressing weak points and critical dependencies within supply
chains

* Practical strategies to enhance resilience against evolving cyber threats
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Planned webinars ((OECCO

* This event is part of a webinar series focused on European cybersecurity supply
chain.

* List of webinars
* Organizational and Operation Security in Trusted Supply Chains (March 19th)
 Certification in the Lifecycle (May 7th)
Enhancing Supply Chain Security: Strategies, Case Studies, and Roadmapping (June 14th)
Paradigm shift from cybersecurity to cyber resilience (July 22nd)

Strengthening Trusted Supply Chains: Real-Time Attack Detection and Critical Dependency
Analysis (today)

Securing supply chains: an overview on challenges and regulatory initiatives (November 21st)
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loT Servers/Gateways

Fragile, Vulnerable & Low Power & Low Cost
Low Performance, Easy to Attack & Compromise

May be Compromised by Botnets, DDoS Attacks, Malware

Contain Many Low Cost Devices: Low Computational Power, Factory Initialization
Some Devices May be Battery Operated or Rechargeable/Energy-Renewable
Communications Among the Nodes (e.g. UWB, Ethernet, MAC, ..)

A Combination of IP Nodes, Ethernet, WiFi, UWB
Networks of Devices and Servers that are Difficult to Coordinate and Self-Regulate

Nodes May Transmit Asynchronously, Periodically or Synchronously

Multi-Core Servers and NUCs Typically used as Gateways & Servers



Measurements at a Server/Gateway Protected by
Intrusion Detection System (IDS)
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* Normally operating (uncompromised) RPis periodically send UDP packets containing the

measurements of the temperature of the RPi.
. The Server supports the UDP protocol with SNMP for incoming packets, and operates the IDS
that uses an accurate AD algorithm reported in [30], and supports the other normal processing

needs of incoming UDP packets.



IDS or AD: Dense Random Neural Network based Auto-associative Attack Detection

waoecsen | ) N€ AUtO-AssocIative Dense RNN (AADRNN)

A Multi-Layer Feedforward Architecture

Finite Number of Neuronal Clusters Rather than Single Neurons

Each Cell Contains a Recurrent Network with Infinitely Many Neurons

*Actual value of Metric  for the packet
o

x; Expected value of Metric for the packet via Dense RNN.




Mathematical Tool — The Random Neural Network

Infinite Discrete State Space & Continuous Time Markov chain
Number of Neurons is n — State of the RNN at time t is a Vector of Natural Numbers

K(t) = (Ky(t), o, Ki(H), v, Ki(1), o, Ky (1))

K.(t)>0 is the Internal State or Potential of Neuron i

If K.(t)> 0, we say that Neuron i is excited and it may fire at t+ and send an excitatory spike
W.p. p+;a or an inhibitory spike w.p; p-; after an exponentially distributed time of rate r,

If K(t)=0, Neuron i is “quiescent” and cannot fire at t+

IT Ki(t)>0, Neuron i fires: It sends a spike to some other Neuron j, w. p. p; = p+;+ p-;>0

] =

Its state changes K.(t+) = K.(t) — 1, and for Neuron j we have
Ki(t+) = Ki(t) + 1 (excitation) or K(t+) = [Ki(t) — 1]+ (inhibition)

Excitatory and Inhibitory Spikes also arrive from Outside the Network to Neurons




Rates and Weights

If K.(t)> 0, then Neuron i fires with probability rAt+o(At) in the

interval [t,t+At] From Neuron i to Neuron j
Excitatory Weight or Firing Rate is w;; =r;p;;

Inhibitory Weight or Firing Rate is w;, =1, p;,,

Total Firing Rateisr,=2n  w ++w -
m=1 ij i

To Any Neuron i, from Outside the Network :
External Excitatory Spikes arrive at rate A,

External Inhibitory Spikes arrive at rate A,




Chapman-Kolmogorov Equations

p(k,t) =Pr[x(t) =k] where{x(®):t=0isa discrete state-space Markov process,
and ki"=k+e —e,;, ki"=k+e +e;

k' =k+e,, ki =k-e,:
The Chapman - Kolmogorov Equations
d +— + + - + —
= P = > [p(k; . 0npy Ik, (2) > 01+ p(k; ", )7 p,; 1+ Y [p(k . O, +1,d,) + A, p(k; D[k, (2) > 0]]
.7 [

_p(k»t)Z[(;\'i + ﬂ)l[ki(t) = 0]"’ Az’]

Let:

p(k) = }imPr[x(t) = k], and q, = 1imPr[x,(z) > 0]

Theorem If the C—-K equations have a Stationary solution,

then it has the " product — form" p(k) = I_I1 qgf(1—-q,), where




The Random Neural Network (RNN)
Product Form Solution

lim.s., Prob[K,(t)=k,, ..., Ki(t)=k, ..., K (t)=k,]

=11 qiki(l-qi)




External Arrival 0N L.
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- Spikes
Probability that /
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Theorem (Gelenbe 93, Gelenbe - Schassberger 95)

The system of non-—linear equations
Ai+2jqujpﬁ :
q; = - , l=i=snm
v, + A, +quj'rjpji
has an unique solution if all the gq, <l1.

Theorem (Gelenbeet al.99) Let g2:[0,1]" — R be continuous
and bounded . For any € >0, there exists an

RNN with two output neurons q,..4q,. S.LI.

SUP o, | 8D =y for y(x) = Te—— e




Offline Auto-Associative Learning for Botnet Attack Detection

ACTUAL TRAFFIC EXPECTED xi1 ' le
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Preprocessing

|
v

1
Intrusion Classification |-

________________________________________________________

Auto-Associative Dense RNN Statistical Whisker based
(AADRNN) Benign Classification

>Traffic metrics are calculated using high-level (anonymous) packet header information,
without knowledge of network architecture or devices

>AADRNN learns ONLY from NORMAL traffic. It generalizes information gained to estimate
expected metric values.



Offline Learning Botnet Attack Detection

> Mirai Botnet attack from Kitsune dataset”

764,137 packets | 107 distinct IP addresses

) x10™
Attack Detection
Accuracy || True Positive | False Negative | True Negative | False Positive 127
Methods Ol 9.33 x 10°
)
AADRNN 99.84 99.82 0.18 99.98 002 | £08
[ e
006
KNN 99.79 99.79 0.21 99.75 0.25 5
(&}
o 04
Lasso 99.78 99.75 0.25 99.95 0.05 - 02h
0.46 x 107 0.14 x 108
Simple Thresholding || 93.18 93.09 6.94 03.63 6.37
AADRNN KNN Lasso

> AADRNN has high performance with low execution time and outperforms compared

methods.

> Can AADRNN detect other types of attacks?

7 *Kitsune Network Attack Dataset,” August 2020. [Online]. Available: https://www.kaggle.com/ymirsky/network-attack-dataset-kitsune



http://www.kaggle.com/ymirsky/network-attack-dataset-kitsune

Simultaneous Detection of Various Types of Attacks

> KDD Cup’99 dataset8 | 41 network traffic features | 37 different attack types
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Intrusion Label in The Dataset

> AADRNN achieves accuracy above 98 % for 21 out of 37 attack types.
> [t outperforms Support Vector Machine — One Class Classifier (SVM-0OCQC)
> How will AADRNN react (adapt) if normal network traffic drastically changes?

8"KDD Cup 1999 Data.” [Online]. Available: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html



http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Decentralized and Online Federated Learning Intrusion Detection (DOF-ID)

> The DOF-ID architecture hosts many distinct
Decentralized and Online Federated Learning IDS for Networkn |  components of a supply chain.

Local | Local Learning I Share > Each component utilizes an instance of a
.\'%wgrk—» using own - > the Parameters common IDS and
FalC | Network Traffic of Local IDS

1. Learns directly from its local traffic data,
, " : 2. Exchanges parameters with other
Receive Up-to-Date Decentralized

IDS Parameters Federated I l components,

ﬁ from the Peers {Irtn}mEN\n Update n 3. Incorporates other nodes’ up-to-date

knowledge into its IDS via Decentralized

oo, 5 S,
%Q/Q)&;??A:\ / Federated Update.
%

Network 1 g > DOF-ID improves the overall security of all
§

collaborating nodes as it

A 4

07 « Takes advantage of the experience of each
:5?2:{&9@ Network n node,
m e’ ® » Preserves the confidentiality of the local data
at each of these nodes.

Network N



Attack or Intrusion Detection System

Avg. packet length I N 31 SWBC

in bytes An

Avg. number of DRNN —p| ~ 1 ;f}l —> %% N Attack

packets per second auto-associative Kyl 1 Decision
memory | :

Avg. traffic in bytes — ﬁl i :

per second ny

>Deep Random Neural Network (DRNN) is used to created Auto-Associative Memory
of “benign” network traffic.

>DRNN always estimates the expected traffic metrics for benign traffic.

>Local Learning algorithm uses learning data contains only normal traffic and
« Minimizes a reconstruction loss for the learning data

« Computes decision parameters based on only the normal traffic statistics 16



DISFIDA: Distributed Asynchronous Federated Learning

Receive up-to-date
IDS parameters
from peers

Update the Adapt the updated
parameters of each IDS to local network
segment of the IDS traffic

Select the set of
concurring nodes

> A set of nodes that concur with for n?ost of the decisions of local IDS for the local normal traffic:

C. ={m: lZ Y=yF) >0, YmeN\n}

> The IDS parameters are updated separately for each DRNN layer and decision parameters

averaging with the closest concurring node for that parameter:
l l l * : _pt
O < b+ (1 —c) O, ‘ mo—afngelggn( n 0m|)-

> The output layer weights of DRNN are updated via extreme learning machine to fully adapt to the
local benign network traffic:

Wﬂn,H} (X[nH 1) )JrXfr




Performance Evaluation: Usecase & Datasets

MIRAI DoS
>"Mirai Botnet” attack data from the Kitsune dataset: HTTP
/ « 107 unique IP addresses
_ b « 764,137 packets transmitted

- in approx. 2 hours | - /
Network 1

“DoS HTTP” and “"DDoS HTTP” attacks from Network 12
the Bot-IoT dataset: w

.___

DDoS
HTTP

1%

Network N 18

> DoS HTTP attack data:

* 29,762 packets transmitted
* in 49 minutes

> DDoS HTTP attack data:

* 19,826 packets transmitted
* In 42 minutes




Performance Evaluation

1 | ,
1- _ . i
0.9+ 097 —=
§ 0.8~ =
>
E 08/ 80.7- , .
B 3 —_
= S 0.6
o 0.7 <
o 0.5 o —
0.6 BEAccuracyl 0.4 —_ ' |
BTPR L L
ETNR 0.3
0.5 - — ' | |
Mirai DoS HTTP DDoS HTTP DOF-ID No Federated Average ACN ACN-L

> Nodes achieve above 0.88 accuracy.
> DOF-ID has the best accuracy among all

> All nodes detect local intrusions with high TPR
methods compared.

(above 0.92).
> “Average”, which is one of the most common
federated update methods, performs poorly as
network traffic across nodes varies
> The nodes suffer from some false alarms. considerably.

> For any node, the federated update time is
about 29.6 ms.
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Many Attack Types, e.g. Botnets, Create Floods:
Effect of a Flood Attack on the Gateway/Server
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« Huge packet queue forms at the Server input prior to the
IDS module during a 60-second UDP Flood Attack
launched from one of the Ras-Pis, Resulting in Large
Outliers in IDS Processing Times
Rapid backlog of packets (about 400,000 packets),
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Measurements on the Real System :
Histogram of the Server’s IDS processing time per packet
Without QDTP Traffic Shaping
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Probability
o o o o o

o
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e (Right) - Attack - IDS Average Average Processing Time 65% Higher

* 3ms==>4.82 ms




Smart Quasi-Deterministic Transmission Policy Forwarder (SQF)
between the Network Switch and the |oT Server/Gateway

n
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L
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Traffic Shaping with the Quasi-Deterministic Transmission Policy
t.,—a,.,1fa,,>t+D,=t+Difa <t +D

QDTP Et -a — [W QDTP _(a -a )+ D]+
Wn+1 n+l n+l n ntl n

: ORDINARY FIFO i i i
n-th Packet Arrival ... n-th Packet Departure _ ot D@w"@@ﬂﬁ"th aptr QDT;rOtaI quifons eQ-E'TmeG
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0 Traffic Shaping with QDTP
P O W (Gelenbe-Sigman ICC 2022)
cOmF%im‘ g ’ IE SmartaQDTP o
P t,=a,, Iifa.>t+D,
o ey =t,+D, if a,,,< t,+D
W, QDTP= t -a =[W QdbTP-(a -a )+DJ*
"+ 1 n+l n n+l n
Wn+1Server - [WnServer (tn+1-tn)+s ]+
Key Theorem
— + W < W
If D < S W NServer — NEIEO
QDTP
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Server Queue Length with Smart QDTP

106 / ! { __Without QDTE 106 f‘ ________________________________ I --WlthOUt QDTP‘- 106 7 I ! ‘__Without QDTP’
_____________ —With QDTP i T Wi QDR . —With QDTP
s e o N | S ema i
||, ~~~~~~ ~ E \‘ i \ﬂ.
| N L \‘ ! \~ =

%)104 i \‘\ %104: E \ %104 E ‘\\
c ! § 5 i ! = i e
ki ! i =4 l L "\
o ! i o ! o I Vol
3 i | 3 | i 3
S ! . =R ' S
g% 1 i G 10 3 ! d 10%+
1 1 ’ I
i : § i i
| i P | : !
! i o ! : !
L i 1 1 I
o . ‘ — me— N ‘ . _— . . . , \ \
0 100 200 300 400 500 600 700 800 900 1000 0 500 1000 1500 2000 2500 3000 0 2500 5000 7500 10000 12500 15000
Time (s) Time (s) Time (s)
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e Number of Packets =~ 153667 e Number of Packets = 470000 e Number of Packets = 400000

« The blue curve shows the packet queue length of the server when using SQDTP. Because the value of D we use is

very close to the average value of Tn measured to be 2.98 ms, the fluctuations in of T, causes a small packet queue

buildup.



Effect of The Smart QDTP Forwarder (SQF)

Histogram of measurements:. Server’s IDS processing time per packet
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Linear Scale Queue Length with the Smart QDTP
Forwarder (SQF)

700000 s

600000 | § S~

< 500000 : i i

2

& 400000 1 S

- i ~

B

3 300000 !

3 1 i

200000 ' ; g
100000 £ o
i T

O_' 2/ S J
0 500 1000 1500 2000 2500

Time (s)

We observe that when the attack lasts for 60 seconds, the number of received packets is = 680,000, and due to the

paralysis of the Server in several time intervals, many packets are dropped.



Queue Buildup & Simple Attack Mitigation

. Mitigation with parameters N, K : If the SQF receives more than N packets in a time interval smaller

than or equal to D, it drops all incoming packets for the next K.D time units. The action is repeated

as long as condition 1) (above) on N persists.

1 4 Attack
1 3 Eenolg 1 8
12 g
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<10 =
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P ) b
g 6 g 8
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4
3 4
? 2
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* WechoseN=10,K=3,and D =3 ms
» The figures show the packet queue length at the server during the experiment when the attack lasts "10 seconds (left), 60 seconds (Right)"and

the mitigation action is applied. The result is a very small accumulation of packets at the server during the attack period, and then after the

attack ends the SQF can continue to operate normally.



Adaptive Mitigation

- (N) Normal Operation: the IDS Tests for Successive W-Packet Windows
-(A) If an Attack is Detected by the IDS in the Current W-Packet

Window, Drop Packets in the Input Queue, Skip Testing for the next m
Packets, and Test Again the next W-packet Window:

* If the IDS says « Attack » then Repeat the Process (A),

*Else Move Back to Normal Operation (N), i.e. test each Successive W-
Packet Window




ADAPTIVE Mitigation to Minimize Average Cost C(AAM)
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Future Work

-Incorporate Self-Supervised Learning of local normal traffic into Federated
Learning to reduce the number of false alarms,

-Address the overall energy consumption, distributed communication costs, and
the possible performance slowdown that may be caused by federated learning,
-Expand the experimental setup for large networked systems such as supply
chains, smart grids or large loT networks, and develop Mitigation Methods for
Cyberattacks against Supply Chains

- Investigate the Vulnerabilities that may be introduced to the Learning Process




Thank You for Your Attention
Erol Gelenbe

Can Such Effects be Included in Digital Twins ?7?

Questions?




ECCO Supply Chain

European Cybersecurity COmmunity
T [

©

Identifying Weak Points and Critical
Dependencies (for NIS-2)

Mag. Michael Herburger, BA MA PhD
FH-Assistant-Professor and Research Project Manager @ University of Applied Sciences Upper Austria, Department ,,Supply Chain Management”

Senior Manager for Supply Chain Cybersecurity @ PwC Austria, Department ,,Cybersecurity and Privacy”



Challenges ((UECCO

European Cybersecurity COmmunity

in addressing ICT/OT supply chain cybersecurity

» A significant challenge stems from terminology, since various definitions were identified in all the
reviewed documents. These refer to supply chain cybersecurity and what it entails, but also to the
various entities involved in the supply chain, e.g. managed service provider. This situation creates

confusion, especially concerning the scope of each different approach. It also makes the
comparison of these approaches challenging.

» This confusion around terminology is also reflected in national policy documents and can pose
challenges for NIS2 directive’s implementation. Therefore, efforts to create a common
understanding in the scope of ICT/OT supply chain management should be undertaken.

Source: ENISA Good Practices for Supply Chain Cybersecurity, https://www.enisa.europa.eu/publications/good-practices-for-supply-chain-cybersecurity



Scope NIS-2 ((U ECCO

Type of supplier

Function

and provider

+ Design, develop, manufacture, and deliver products and components to their customers.

® D i re Ct S u p p I i e rS Manufacturers © + Source hardware and software components in their supply chain.

« Deliver products which can serve multiple purposes; i.e. similar products are sold to different
product users with different use scenarios.

- B Ut a d d FESS S u bco nt ra Ctl ng « | iable for their part of delivery and service provided.

Engineer systems that are used in production environments.
System integrators °Eng ¥S p

° IT an d OT su p pl lers (service providers « Design and deploy systems, such as automation solutions used in industries and critical

infrastructure.
? for engineering + Can include civil work such as deployment of network infrastructure or pipelines for example
- O N Iy . Services) in tumkey solutions.

= Play an essential part in cybersecurity design and implementation in (critical) infrastructure.

Managed Service Providers (MSPs)

« Provide services related to the installation, management, operation or maintenance of ICT
products, networks, infrastructure, applications or any other network and information

[ ) N eW a n d eX I Stl n g S u p p I I e rs systems, via assistance or active administration camied out either on customers’ premises or

remotely.
ICT service MSSP
management + Assists entities in areas such as incident response, penetration testing, security audits and

consultancy (NIS2 directive, Article 6(40)).
. . o « Offers services, such as:
® E N I SA N IS-2 ” I m p I e m e ntl ng G u | d a n Ce + assessment — e.g. penetration testing, or conformance to specific security requirements
or standards;
« implementation — e.g. implementation of security controls such as malware detection in
an infrastructure;
+« management — e g. security operating centre (SOC) services for incident response.
Cloud computing services, include:
Providers of digital = infrastructure as a service,
services 1112 = platform as a service,
+ soffware as a service (SaaS), and
* network as a service.

Source: ENISA Good Practices for Supply Chain Cybersecurity, https://www.enisa.europa.eu/publications/good-practices-for-supply-chaincybersecurity.



From type of suppliers to a list of relevant suppliers ((UECCO

e List of all suppliers
— But what does this mean for big groups? = 10-100k suppliers

* Use of ,,purchasing category/product group”
* Analysis of purchased products
e Data quality?

* Use stakeholders knowledge
yinternal consumer” know details about purchased products

* Next step: realise a risk-based approach to identify the
criticality of relevant suppliers



ECCO

From list of relevant suppliers to supplier categorization ((U

Business criteria for ICT/OT supply chain risk analysis*
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Are these cybersecurity criteria for evaluating the relationship to the suppliers?

Problem: Cybersecurity criteria are not yet operationalised (not like purchasing volume, on time delivery,
product quality)

* ENISA Good Practices for Supply Chain Cybersecurity, https://www.enisa.europa.eu/publications/good-practices-for-supply-chaincybersecurity.
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From list of relevant suppliers to supplier categorization ((U

Purchasing criteria OLD
Purchasing volume, quality aspects, on-time delivery, number of complaints

Purchasing criteria NEW - Supply Chain Cybersecurity criteria
Several different/additional criteria must be used to determine the criticality of supply chain partners and components:

* Does the SC partner have access to your company's intellectual property?

* Does the SC partner have access to your company’s or customer data?

* Does the SC partner have access to your company's system and network infrastructure?
* Isthere an EDl interface (or similar) to the SC partner?

* Isthe SC partner a single source?

* Isthe SC partner involved in your company's development and/or innovation process?

* Does a failure at the SC partner lead to a production stop or a production restriction? B ®

* Does the SC partner supply a smart product? & N 3 R ein %
* Does the SC partner supply fast-moving items or do you supply the SC partner with fast-moving items? DR ,'.j" ;:*_-'._L“':: e g o
* Isthe SC partner highly integrated into the production process? 13 .,:‘. "!‘;’ ',. v S

* Canthe SC partner and its products/services be quickly replaced by alternatives? S .. S e Ly

* Does the SC partner have remote maintenance access to your systems? N WS ‘ 5 ;

* Does your company purchase software as a service from the SC partner? * : 4 - % )

* Source: List of questions (>50), based on NIST, NCSC-Framework, and other related Standards and Guidelines.



Supply Chain Assets to consider

SUPPLIER ASSETS TARGETED BY A SUPPLY CHAIN ATTACK

CUSTOMER ASSETS TARGETED BY A SUPPLY CHAIN ATTACK

Pre-existing Software

Software Libraries

01010
11101 Code
00101

Configurations

Data

—
% Processes

Hardware

"‘ People

e g. software used by the supplier, web servers, applications,
databases, monitoring systems, cloud applications, firmware. It does
not include software librares.

e.g. third party libraries, software packages installed from third parties
such as npm, ruby, etc.

e g. source code or software produced by the supplier.

e.g. passwords, AP| keys, firewall rules, URLs.

e _g. information about the supplier, values from sensors, cerificates,
personal data of customers or suppliers themselves, personal data.

e g. updates, backups or validation processes, signing certificates
Processes.

e g. hardware produced by the supplier, chips, valves, USBs.

e.g. targeted individuals with access to data, infrastructure, or to other
people.

Source: ENISA Threat Landscape for Supply Chain Attacks, 2021.

e N B

Ja\

Data

Personal data

Software

Processes

Bandwidth

Financial

People

e.g. payment data, video feeds, documents, emails, flight plans, sales
data and financial data, intellectual property.

e_g. customer data, employee records, credentials.

e_g. access to the customer product source code, modification of the
software of the customer.

e g. documentation of internal processes of operation and
configurations, insertion of new malicious processes, documents of
schematics.

e_g. use the bandwidth for Distributed Denial of Service (DDoS), send
SPAM or to infect others on a large scale.

e_g. steal cryptocurrency, hijack bank accounts, money transfers.

e_g. individuals targeted due their position or knowledge.



Supplier categories and defined measures

©

ECCO

uropean Cybersecurity COmmunity

2 potential approaches for deriving measures
1) Define measures per question
+ precise risk-based approach
- time consuming and complex
2) Define measures per supplier category
+ less complex and less time consuming
- broader risk-based approach

Use of 4 categories
- low, medium, high, critical
Additionally, think about using different supplier types

Measures M H C
Audits X
Certifications X
Self-Assessments X X

X

Automated Evaluations &
Ratings

Risk Analysis

Vulnerability Scans

Due Diligence Checks




Thank you very much! (©ecco

Contact

michael.herburger@fh-steyr.at

michael.herburger@pwc.com
@LinkedIn
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